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Fluctuations in an asymmetric anharmonic crystal

M Van Canneyt and J Wojtkiewicz†
Institute for Theoretical Physics, Celestijnenlaan 200D, B-3001 Leuven, Belgium

Received 28 February 1997

Abstract. In this paper we continue the investigation of the structural phase transition in
a quantum anharmonic crystal. We calculate the influence of breaking the symmetry of the
interaction potential on the behaviour of fluctuations and their critical exponents. More precisely,
it is shown that when the low-momentum asymptotics of the phonon spectrum (i.e. the Fourier
transform of the interaction matrix) have a quartic asymptotic in one direction, the critical
exponents for the momentum and position fluctuations increase on the critical line. The quantum
nature of the fluctuations inT = 0 is, however, preserved.

1. Introduction

Fluctuations are inherently connected with critical phenomena. The standard opinion on
the theory of critical phenomena is that fluctuations in a critical point dominate over
quantum effects and that critical fluctuations behave in a classical manner (‘washing out’ of
quantum effects by long-range correlations). In most situations, this is in fact the case; but
sometimes (especially at low temperatures) the quantum effects can manifest themselves in
a macroscopic manner and should be taken into account.

A natural problem where such a competition of effects takes place, is the problem of
the displacive phase transitions.

This problem attracted considerable attention from both experimentalists and
theoreticians. Experimental evidence exists of quantum effects observed in critical
fluctuations in crystals such as SrTiO3 [1]. Theoreticalanharmonic crystal modelsintending
to deal with such situations were introduced in [4, 8, 2]; the model considered here is
borrowed from [2]. In this model, we have a crystal lattice of atoms in a potential which
is a superposition of harmonic and double-well-type ones; this model and its solution are
presented in section 2.

The theory of fluctuations in quantum systems has been elaborated in a series of
papers [5–7]. Within this framework, the notion of the fluctuation as an observable,
and a fluctuation operator (corresponding to some physical observable) were introduced.
Moreover, the method of how to compute the commutator of two fluctuation operators, and
the notions of normality (subnormality, supernormality) were introduced there. Excerpts of
this theory, necessary for our paper are presented in section 3.

In this paper, we consider some version of the anharmonic crystal model. Other versions
were considered in [2, 3]. To describe how they are related to ours, let us briefly present
some results of [2].

† On leave of absence from: Department for Mathematical Methods in Physics, Hoża 74, 00-682 Warszawa,
Poland.
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The parameters of the model areλ ≡ h̄/√m (wherem denotes the mass of the atoms)
and the temperatureT . In [2] the full analysis of the phase diagram on a plane(λ, T ) was
performed. This plane is divided into four regions: a one-phase one (T andλ large), two-
phase (T andλ small) and the critical line dividing these regions, with a distinguished point
atT = 0. In [2], the behaviour of the fluctuation operators (i.e. their commutation properties
and the critical exponentsδ characterizing deviation from normality) was calculated. The
operators in question corresponded to the observables: momentum, displacement and the
square of displacement. The results turned out to be dimension dependent, in some cases
they also depended on boundary conditions. The quantum effects manifested themselves in
the fourth region (i.e. atT = 0 on the critical line).

One can expect that the behaviour of a model also depends on the range of interactions.
In [3] long-range interactions were considered. The influence of the range on the behaviour
of the model on the critical line was examined.

In this paper, a different direction of investigation has been undertaken. We assumed
short-range interactions (as in [2]), but an additional assumption was that the low-momentum
asymptotic of the phonon spectrum (i.e. of Fourier transform of interaction matrix) was
different from the standard one. Normally, this asymptotic is quadratic; however, for some
particular values of interaction constants it can happen that the quadratic term vanishes and
the asymptotics are quartic or higher order. In this paper, we assume a quartic asymptotic in
one direction, and the standard quadratic in other directions. This assumption was motivated
by the results of [12], where a non-standard critical behaviour of the spherical model was
obtained, when the interaction constants fulfil some special relation. This relation was
equivalent to non-standard (non-quadratic) asymptotics of the eigenvalues of interaction
matrix. Briefly speaking, it turns out thatthe non-standard asymptotic has led to the values
of critical exponentsδ different than in[2].

This paper is organized as follows. In section 2 we define the model and recall its
thermodynamic properties and phase diagram. We also define there the properties of
interactions. The definition and properties of the fluctuation operators are collected in
section 3. In section 4 we formulate and prove our main results, concerning properties of
the critical fluctuation operators for momenta, displacement and its square on the critical
line. We discuss our results in section 5. In the appendix we collect some technical
results (asymptotic behaviour of integrals) necessary for the analysis of the gap equation in
section 4.

2. Definition of the model and its properties

We consider a model invented to study displacive structural phase transitions with general
anharmonicity [4, 8], and exactly solved in [2]. Let us consider ad-dimensional square
lattice Zd . With each lattice pointl ∈ Zd we associate a quantum particle with massm,
positionQl and momentumPl . The local HamiltonianH3 for any finite subset3 ∈ Zd
with V = |3| is given by the operator

H3 =
∑
l∈3

P 2
l

2m
+ 1

4

∑
l,l′∈3

φl−l′(Ql −Ql′)
2+ a

2

∑
l∈3

Q2
l + VW

(
1

V

∑
l∈3

Q2
l

)
− h

∑
l∈3

Ql (1)

acting on the Hilbert spaceH3 =
⊗

3 L
2(R1).

The first and second terms describe (the quantum version of) the Debye approximation.
The third term describes the stabilization of the lattice and creates a gap in the phonon
spectrum. The fourth one was introduced to describe the displacive phase transition: we
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assume thatW(x) is a function such that the superpositionW(x) + (a/2)x2 has a non-
degenerate minimum outsidex = 0. Typical examples ofW(x) functions are:
• W(x) = (b/2) exp(−η|x|) with b, η sufficiently large to destabilize thea term;
• the polynomial choice:W(x) = b(x4− ηx2) with againb, η sufficiently large.

The particular choice is not important for us if the functionW(x) fulfils some conditions
[4].

Remark. Consider the model with the HamiltonianH ′3 of the form (1), but with third and
fourth terms replaced by

∑
l∈3((a/2)Q

2
l +W(Q2

l )). Such a choice gives us alocal model,
which is more realistic, but also much more difficult to deal with. The difference between
models described by HamiltoniansH and withH ′ is similar to the difference between the
Ising model and the spherical one. The substitution ofQ2

l by the arithmetic mean over3
is anansatzcorresponding to the concept of theself-consistent-phonons(see [10, 4]).

The model (1) is soluble in the sense that for all temperaturesT > 0, the free-energy
density and the thermal averages can be calculated explicitly (see [2]). Take the hypercubic
subset3 ⊂ Zd with periodic boundary conditions:

3 =
{
l ∈ Zd

∣∣∣∣− Nα2 < lα 6
Nα

2
;α = 1, . . . , d

}
(2)

thenV =∏d
α=1Nα and the dual lattice3∗ is given by

3∗ =
{
q

∣∣∣∣qα = 2π

Nα
nα; nα = 0,±1, . . . ,±

(
Nα

2
− 1

)
,
Nα

2
;α = 1, . . . , d

}
. (3)

The free-energy density for this model is given by

f (T , h = 0) = lim
3

{
1

βV

∑
q∈3∗

ln[2 shβλ�q(c3)] +W(c3)− c3W ′(c3)
}

(4)

wherec3 is a solution forc of the self-consistency equation

c =
〈

1

V

∑
l∈3

Q2
l

〉
H3(c,h=0)

= 1

V

∑
q∈3∗

λ

2�q(c)
coth

βλ

2
�q(c). (5)

Hereβ = 1/kT and

λ = h̄√
m

(6)

�2
q(c) = ω2

q +1(c) (7)

1(c) = a + 2W ′(c) (8)

ω2
q = φ̃(0)− φ̃(q) (9)

φ̃(q) is the Fourier transform ofφ on the latticeZd . The function1(c) represents a gap
in the spectrum (7) of self-consistent phonons.c3 is an order parameter measuring the
mean square of the particle displacements from their equilibrium positions. Thestability
condition of the model is expressed by�2

q(c) > 0 for all c > 0 or equivalently by

a + 2W ′(c) > 0 for all c > 0. (10)
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Figure 1. The phase diagram.

3. The phase diagram

The phase diagram can be obtained from the study of the gap equation (5) in the
thermodynamic limit3→ Zd . It can then be written as

c = ρ + Id(c, T , λ) (11)

where

ρ = lim
3

1

V

λ

2
√
1(c)

coth
βλ

2

√
1(c) (12)

Id(c, T , λ) = λ

(2π)d

∫
Bd

ddq
coth( βλ2 �q(c))

2�q(c)
(13)

whereBd = {q ∈ Rd : |qα| 6 π} is the first Brillouin zone.
Define the domainD as the set of thosec which satisfy the stability condition. In [2]

it is shown thatD = [c∗,∞], wherec∗ > 0 is the solution of

c∗ = Id(c∗, T , λ).
We then have the following result.

Theorem 1.
(1) The equation

c∗ = Id(c∗, T , λ)
for fixed c∗ defines a unique curveγ = λc(T ). This curve separates the phase diagram into
two open domains, phases (I) and (II) (see figure 1).

(2) Let ρ(T , λ) = max{0, c∗ − Id(c∗, T , λ)}; then

ρ(T , λ) = 0 if (T , λ) ∈ (I) ∪ γ
> 0 if (T , λ) ∈ (II) .

Proof.
(1) The proof is essentially the same as in [2], one only needs to check the concavity

of the T → λc(T ) curve. This can easily be done, and will yield that the concavity is
independent of the particular form of the potential, or its Fourier transformφ̃(q).

(2) The proof of this part is completely the same as in [2]. �
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A detailed discussion of the phase diagram can be found in [2]. We will restrict ourselves
to the characterization of the two phases (I) and (II). In order to do this, note first that the
Hamiltonian (1) has aZ2 symmetryQl →−Ql for h = 0, i.e.

η3(Ql) = 0.

The phase transition shows the spontaneous breaking of this symmetry, namely, in domain
(II) there exist two extremal equilibrium states† η+ andη− such that

η+(Ql) = −η−(Ql) =
√
ρ(T , λ).

4. Fluctuation operators and critical exponents

4.1. Fluctuation theory

In this section we repeat the essentials of the theory of fluctuations, needed for the calculation
of the critical exponents, after which we proceed to calculate the critical exponents for
observablesP,Q andQ2.

ConsiderAi = τi(A) a copy of the local operator A, translated at the lattice pointi ∈ Zd
by the automorphismτi . The fluctuation operatorFδ(A) in the ergodic translation-invariant
stateη = lim3 η3 on the algebraA of quasilocal observables is an unbounded operator on
some Hilbert space, given by

Fδ(A) = lim
3

1

V
1
2+δ

∑
i∈3
(Ai − η3(Ai)). (14)

The limit (14) is to be understood as a central limit. The exponentδ guarantees the existence
of the fluctuation operator, when the following condition is satisfied

0< lim
3
(Fδ(A)

2) <∞. (15)

The critical exponentδ measures the deviation from the standard central limit (characterized
by square-root behaviour). The following terminology is used in this respect. Ifδ = 0 then
the fluctuations are callednormal. If δ > 0 then the fluctuations are said to beabnormal
critical and they are calledsupernormalor squeezedfor δ < 0.

The algebra of fluctuation operators is characterized by their commutators. For any two
operatorsA andB, the commutator is

[FδA(A), FδB (B)] = lim
3

1

V 1+δA+δB
∑
i∈3

[Ai, Bi ]

=


η([A,B]) if δA + δB = 0

0 if δA + δB > 0

undefined ifδA + δB < 0.

(16)

For η([A,B]) 6= 0, the non-vanishing commutator shows the quantum nature of the
fluctuation operators.

For our model we will consider the algebra of observables generated byP,Q andQ2.
Their fluctuations are then given by

FδQ(Q) = lim
3

1

V 1/2+δQ
∑
l∈3
(Ql − η3(Ql)) (17)

† An explanation of all notions used in this paper can be found in [2], and a more thorough exposition on operator
algebras and states can be found in [9].
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FδP (P ) = lim
3

1

V 1/2+δP
∑
l∈3
(Pl − η3(Pl)) (18)

Fδ
Q2 (Q

2) = lim
3

1

V 1/2+δ
Q2

∑
l∈3
(Q2

l − η3(Q2
l )). (19)

Using the KMS equations, one can explicitly calculate the variances of these fluctuations.
The following expressions are the result of this calculation:

lim
3
η3(FδQ(Q)

2) = lim
3

1

V 2δQ

λ

2
√
1(c3)

coth

(
βλ

2

√
1(c3)

)
(20)

lim
3
η3(FδP (P )

2) = lim
3

1

V 2δP

λm

2

√
1(c3) coth

(
βλ

2

√
1(c3)

)
(21)

lim
3
η3(Fδ

Q2 (Q
2)2) = lim

3

1

V 1+2δ
Q2

λ2

21(c3)
coth2

(
βλ

2

√
1(c3)

)
+
∑
q 6=0

λ2

2�q(c)2
coth2

(
βλ�q(c)

2

)
. (22)

The aim now is to find the exponentsδQ, δP and δQ2 such that these variances are non-
trivial. To accomplish this, it is necessary to understand the behaviour of the gap, as the
thermodynamic limit is taken. This is the subject of section 4.2.

4.2. The form of the interactions, the gap equation

It turned out that the range of interactions does not influence the character of fluctuations
if we are in the region of the phase diagram outside the critical line. If, however, we are
on the critical line, the critical exponents are sensitive to the range of interactions [2, 3].

In this paper we consider short-range interactions but with anomalous low-momentum
behaviour, namely

φ̃(0)− φ̃(q) ∼
d−1∑
i=1

q2
i + q4

d . (23)

Such a behaviour is exceptional (of codimension 1 in the space of parameters{φk}), but can
appear if one considers a one-parameter family of models.

The values of theδ-exponents we obtain from the analysis of equation (11) on the critical
line. We have thereρ = 0, thus the asymptotic behaviour of the gap1(c3(Tc, h = 0)) is
given by the condition

lim
3

1

V

λ

2
√
1(c3)

coth
βc(λ)λ

2

√
1(c3) = 0. (24)

We must distinguish two cases:Tc(λ) > 0; in this case equation (24) is equivalent to

lim
3

1

Vβc(λ)1(c3)
= 0 (25)

and the caseTc(λ) = 0, where equation (24) turns out to be

lim
3

λ

2V
√
1(c3)

= 0. (26)

In both cases, forV → ∞ the gap1(c3(Tc(λ), h = 0)) ≈ V −γ with 0 < γ < 1. The
exponentγ determines the values ofδP , δQ and δQ2. We obtainγ from the analysis of
equation (5) forh = 0.
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4.3. CaseTc(λ) > 0

4.3.1. Characteristics of the operatorQ. Let us write the self-consistency equation (5) in
the form

I + II + III = 1

V

λ

2
√
1(c3)

coth
βc(λ)λ

2

√
1(c3) (27)

where

I = c3 − c∗
II = c∗ − Id(c3, Tc(λ), λ)
III = Id(c3, Tc(λ), λ)− 1

V

∑
q 6=0

λ

2�q(c3)
coth

βc(λ)λ

2
�q(c3).

The analysis of equation (27) is performed analogously as in [2, 3]. The first term,I , from
the left-hand side of (27) is proportional to1, because [2]

1(c3)

2W ′′(c∗)
= (c3 − c∗)+O(c3 − c∗).

The third term (III ) behaves as

Id(c3, Tc, λ)− 1

V

∑
q 6=0

λ

2�q
coth

βcλ

2
�q = O(lnV −(d−2)/d) (28)

uniformly in c3 ∈ D(c∗), where

Id(c3, Tc, λ) = 1

(2π)d

∫
Bd

ddq
λ

2�q
coth

βλ

2
�q.

Equality (28) was obtained by using a method developed in the appendix of [11].
Let us look at the second term:

II = c∗ − Id(c3) = Id(c∗)− Id(c3) = IIa + IIb (29)

where

IIa = I (<ε)d (c∗)− I (<ε)d (c3)

IIb = I (>ε)d (c∗)− I (>ε)d (c3)

where the superscript(< ε) denotes the integral over a sphere of radiusε, and(> ε) denotes
integral over the rest of the Brillouin zone.

Remark. What we need is an asymptotic behaviour of this equation for1 → 0. It
is singular in1 (i.e. non-analytic), and this non-analytic behaviour is determined by the
behaviour of the integrand in the neighbourhood ofq = 0. The partition of the integration
region as above was chosen as a matter of convenience.

The behaviour ofI (<ε) is determined by the lowest non-vanishing terms in the Taylor
expansion of the denominator in the integrand. The asymptotic form ofId(c, T , λ) as
1→ 0 is calculated in the appendix (expression (42)). Dropping the constant term in this
expression gives us the behaviour ofIIa. ExpressionIIb has been calculated in exactly
the same way as in [2], and it turns out that it is always proportional to1:

{I (>ε)d (c∗)− I (>ε)d (c3)} = 1(c3)

2W ′′(c∗)
∂cI

(>ε)
d (c′3)+O(c3 − c∗) (30)

wherec′3 ∈ [c∗, c3] (from the mean-value theorem).
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We are looking for the asymptotic behaviour of1 as a function of the volumeV . It is
determined from the equation [2]

[I + IIa + IIb + III ]Vβc(λ)1(c3) = 1 (31)

which has the solutions1 ∼ V −γ , where

γ =


4
5 if d = 3
4
7 if d = 4
1
2 if d > 5.

The calculation ofδQ is now straightforward from equation (20); we have simplyδQ = 1
2γ ,

or explicitly:

δQ =


2
5 if d = 3
2
7 if d = 4
1
4 if d > 5.

(32)

4.3.2. Characteristics of the operatorQ2. ForQ2, it is necessary to analyse the behaviour
of ∑

q 6=0

1

2�q(c)2
coth2

(
βλ�q(c)

2

)
when1→ 0. This is done in much the same way as the analysis of the gap equation. We
approximate the sum by an integral:

η3(Fδ
Q2 (Q

2)2) = 1

V 1+2δ
Q2

λ2

21(c3)
coth2

(
βλ

2

√
1(c3)

)
+ 1

V 2δ

{
λ2

V

∑
q 6=0

coth2(
βλ�q(c)

2 )

2�q(c)2
−
∫
q∈B

dq
coth2(

βλ�q(c)

2 )

2�q(c)2

}

+
∫
q∈B

dq
λ2

2�q(c)2
coth2

(
βλ�q(c)

2

)
.

The analysis of this expression is done in exactly the same way as the analysis of the gap
equation. Performing this analysis, one can see that the first term dominates the behaviour of
the fluctuation as the gap disappears. The result then follows by using again the behaviour
of the gap for large volumes

δQ2 =


3

10 if d = 3
1

14 if d = 4

0 if d > 5.

(33)

4.3.3. Characteristics of the operatorP . The result forP follows immediately from the
behaviour of coth(x) for small x. It turns out that the momentum operator isnormal.

4.4. CaseTc(λ) = 0

Here, we proceed exactly the same scheme as in the case ofT 6= 0.
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4.4.1. Characteristics of the operatorQ. In this case equation (27) takes the form

{c3 − c∗} + {c∗ − Id(c3, 0, λ)} +
{
Id(c3, 0, λ)− 1

V

∑
q 6=0

λ

2�q(c3)

}
= λ

2V
√
1(c3)

(34)

where

Id(c3, 0, λc(0)) = 1

(2π)d

∫
Bd

ddq
λ

2�q(c3)
. (35)

Using the second result from the appendix, (43), for obtaining the asymptotic dependence
of 1 in the second term of equation (34), and then a method from [11, 2] for volume
dependence of the third term in (34), and solving the analogue of the equation (31), we
finally obtain the following dependence of1 as a function ofV : 1 ∼ V −γ with γ given
by

γ =


4
3 if d = 2
4
5 if d = 3
2
3 if d = 4.

The calculation ofδQ is straightforward; we simply haveδQ = 1
4γ , or explicitly

δQ =


1
3 if d = 2
1
5 if d = 3
1
6 if d = 4.

(36)

4.4.2. Characteristics of the operatorQ2. The method used is identical to the caseT > 0,
and the result is

δQ2 =
{

1
24 if d = 3

0 if d > 4.
(37)

4.4.3. Characteristics of the operatorP . For P , we obtain that the momentum fluctuation
operator has the critical exponentδP = −δQ for all dimensions. This result follows from
noting that forT = 0:

η3(FδP (P )
2) = 1

V 2δP

λm

2

√
1(c3)

and

η3(FδQ(Q)
2) = 1

V 2δQ

λ√
1(c3)

.

5. Conclusions

This paper can be considered as some continuation of investigations on the area of
fluctuations in anharmonic crystal models. Other papers, which concerned similar circle
of problems, are [2, 3].

This circle of problems can be considered as part of a broader programme. Namely, to
see how a general theory of quantum fluctuations works in concrete physical models. One
can mention here the following subject: Bose–Einstein gas [13, 14].
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The concrete aim of this paper was to check in which manner the effect of the
asymmetry in the phonon spectrum manifests itself. We assumed the following form of the
phonon spectrum for ad-dimensional model: in one direction it has quartic low-momentum
asymptotics, and in the remaining directions the spectrum is ordinary quadratic. In the paper
we examined the details of the behaviour of the model (especially on the critical line) along
the lines of [2]. The following has been established.
• The phase diagram of the model remained unchanged, compared with the symmetric

model [2]. Moreover, the character of fluctuations (i.e. their normality, ab- and super-
normality) has not changed in the different parts of the phase diagram.
•Whathas changed is the behaviour on the critical line, measured quantitatively by the

δ exponent. It was always larger in comparison with the symmetric model, independently
of dimension, and for bothT > 0 andT = 0. In more physical terms, the fluctuations are
always stronger in the (our) case of asymmetric anharmonicity. (It should be stressed
that if we have theasymmetric form of the phonon spectrum, but purely quadratic:
φ̃(0) − φ̃(q) ∼ ∑d

i=1 aiq
2
i , then the critical exponents areindependentof the values of

ai , provided allai > 0.)
• It has been established that the fluctuations do not form a Lie algebra, different from

the CCR algebra, as described in [15]. This follows immediately from the values ofδ for
P,Q andQ2.
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Appendix. A representative calculation

The asymptotic behaviour of the integrals appearing in the study of the gap equation can
be studied by using a scaling argument. In this appendix we present, as an example, the
calculation of the behaviour of the following integral when1→ 0:

Id(c, T , λ) =
∫
B

ddq
1

�q(c)
coth

(
βλ

2
�q(c)

)
(38)

for T > 0. The divergence of this integral is dominated by the behaviour of the integrand
at distances close to the origin. We therefore split the Brillouin zone in a part close to the
origin, say|q| < ε, and the rest. Then (38) becomes∫

|q|<ε
ddq

1

�q(c)
coth

(
βλ

2
�q(c)

)
+
∫
|q|>ε

ddq
1

�q(c)
coth

(
βλ

2
�q(c)

)
.

The integral where|q| > ε is non-divergent for1 → 0, so we can consider the region
close to the origin, and approximate coth(x) ∼ 1

x
for small x. Thus, the integral becomes

2

βλ

∫
|q|<ε

ddq
1

�2
q(c)
= 2

βλ

∫
|q|<ε

ddq
1

1+ φ̃(0)− φ̃(q) . (39)

We must calculate the behaviour as1→ 0 of the following integral:∫
· · ·
∫

U

dx1 . . .dxd
1

1+∑d−1
i=1 x

2
i + x4

d

(40)
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(d denotes the dimension). Both integrals: (39) and (40), have the same behaviour as
functions of1. It is not necessary to specify explicitly the form of the integration domain
U . We demand only thatU should be an open neighbourhood of zero. (Its size is of order
ε.) We substitute{

yi = xi i < d

yd = x2
d

(41)

then we obtain∫
· · ·
∫

Ũ

dy1 . . .dyd
1

2
√
yd

1

1+∑d
i=1 y

2
i

(Ũ is the domainU in new variables). We switch to polar coordinates and integrate over
some ball of radiusR2, centred at zero and contained inŨ . We obtain:∫ R2

0
dr
∫
· · ·
∫

�

dd−1�
rd−1

(1+ r2)
√
rf (�)

where� denotes the space angles. Performing integration over the space angles (the result
is finite, because the singularities of the integrand are integrable), leaves us with the integral

Sd

∫ R2

0
dr

rd−3/2

(1+ r2)

(Sd is some constant depending on the dimension). Now, we perform the substitution
r = √1ρ2 and obtain

2Sd1
d/2−5/4

∫ R/11/4

0
dρ

ρ2d−3

(1+ ρ4)
.

In the sequel, we will consider the integrals in dimensions of importance for us.
• d = 3. Consider first:

I3 ∼ 11/4
∫ R/11/4

0
dρ

ρ4

(1+ ρ4)
= 11/4

(∫ R/11/4

0
dρ −

∫ R/11/4

0

dρ

1+ ρ4

)
= 11/4(R/11/4+ J3+O(13/4))

whereJ3 =
∫∞

0
dρ

1+ρ4 . So, we finally obtain

I3 ∼ C3+ C ′311/4.

It should be stressed that the constantC ′3 is independentof the choice of theU set.
• d = 4. We have:

I4 ∼ 13/4
∫ R/11/4

0
dρ

ρ6

(1+ ρ4)
= 13/4

(∫ R/11/4

0
ρ2 dρ −

∫ R/11/4

0

ρ2dρ

1+ ρ4

)
= 13/4(R31−3/4/3+ J4+O(11/4))

whereJ4 =
∫∞

0
ρ2 dρ
1+ρ4 . So, the final result is

I4 ∼ C4+ C ′413/4.

• d = 5. By identical arguments as before

I5 ∼ R5/5+ R1+ J31
5/4+15/4O(13/4)
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so we have as the dominant terms

I5 ∼ C5+ C ′51.
It is easy to see that we have the same1-dependence for dimensions higher than 5.

We can therefore conclude that integral (38) has the following behaviour:

Id(c, T , λ) ∼ Cd + C ′d1θ whereθ =


1
4 if d = 3
3
4 if d = 4

1 if d > 5

(42)

(rememberT > 0!). Arguing along the same lines, one comes to the conclusion that for
zero temperature

Id(c, 0, λ) =
∫
B

ddq
1

�q(c)
∼ C̃d + C̃ ′d1τ (43)

where

τ =


1
4 if d = 2
3
4 if d = 3

1 if d > 4.
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